High T_c Superconductivity

Outline

- 1. Introduction to conventional superconductivity
- 2. Introduction to scanning tunneling microscopy (STM)
- 3. High T_c Superconductor : Cuprates
- 4. High Tc Superconductor : Fe-based Compounds

Outline

1. Introduction to conventional superconductivity

- 2. Introduction to scanning tunneling microscopy (STM)
- 3. High Tc Superconductor : Cuprates
- 4. High Tc Superconductor : Fe-based Compounds

Helium Liquefaction in 1908

July 10, 1908

©Leiden Institute of Physics

Heike Kamerlingh Onnes

Nobel Prize, 1913

"Door meten tot weten" (Knowledge through measurement)

Discovery of Superconductivity in 1911

Heike Kamerlingh Onnes

Nobel Prize, 1913

"Door meten tot weten" (Knowledge through measurement)

H. Kamerlingh Onnes, Commun. Phys. Lab. Univ. Leiden. Suppl. 29 (Nov. 1911).

The Meissner Effect in 1933

Perfect diamagnetism В В B=0 $T < T_C$ T>₽

Walther Meißner

Robert Ochsenfeld

©PTB Berlin Institute

Perfect Conductor vs Superconductor

Basic Properties of Superconductors

Zero electrical resistance + Meissner effect

Periodic Table of Superconductivity

Н		ambient pressure superconductor						high pressure superconductor									He
Li 0.0004 14 30 Na	Be 0.026 3.7 30 Mg	T _c (K) T _c ^{max} (K) P(GPa)					T _c ^{max} (K) P(GPa)					B 11 250 Al 1.14	C Si	N P	O 0.6 100 S	F Cl	Ne
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	8.2 15.2 Ge	13 30 As	17.3 190 Se	Br	Kr
	29 217	19.6 106	0.39 3.35 56.0	5.38 16.5 120			2.1 21				0.875	1.091 7 1.4	5.35 11.5	2.4 32	8 150	1.4 100	
Rb	Sr 7 50	Y 19.5 115	Zr 0.546 11 30	Nb 9.50 9.9 10	Mo 0.92	Tc 7.77	Ru 0.51	Rh .00033	Pd	Ag	Cd 0.56	In 3.404	Sn 3.722 5.3 11.3	Sb 3.9 25	Te 7.5 35	I 1.2 25	Xe
Cs 1.3 12	Ba 5 18	insert La-Lu	Hf 0.12 8.6 62	Ta 4.483 4.5 43	W 0.012	Re 1.4	Os 0.655	Ir 0.14	Pt	Au	Hg- α 4.153	Tl 2.39	Pb 7.193	Bi 8.5 9.1	Ро	At	Rn
Fr	Ra	insert Ac-Lr	Rf	На						1			1		•	<u></u>	
		La-fee 6.00 13 15	Ce 1.7 5	Pr	Nd	Pm	Sm	Eu 2.75 142	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu 12.4 174	
		Ac	Th 1.368	Pa 1.4	U 0.8(β) 2.4(α) 1.2	Np	Pu	Am 0.79 2.2 6	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

M. Debessai et al., J. Phys.: Conf. Series 215, 012034 (2010).

Type I & II Superconductors

J. N. Rjabinin, L.W. Schubnikow, Physikalische Zeitschrift der Sowjetunion 7, 122 (1935)

Superconducting Vortices

Decoration image of vortex lattice

U. Essmann and H. Trauble, Physics Letters 24A, 526 (1967)

Alexei A. Abrikosov

Nobel Prize 2003

Vortex-Current Interaction

• Lorentz force on *J_S* due to the interaction between *J_S* and *B*.

$$f = \int J_s \times B \ d^2r = J_{tr} \times \int B \ d^2r = J_{tr} \times (\phi_0 \widehat{B})$$

• Vortex motion implies that the vortex is subject to a power input per unit volume of vortex of characteristic radius r_B

$$P = \frac{fv}{\pi r_B^2} = J_{tr} \frac{\phi_0}{\pi r_B^2} V = \underbrace{J_{tr} B V}_{\text{Lorentz force}}$$

- Vortex motion leads to dissipation! R≠0 !
- Vortex pinning is crucial for applications.

Magnus force

Quantum Levitation

Magnetic flux pinning is key. Unstable for type I superconductors.

© Quantum Experience ltd.

© NHMFL

The Origin of Conventional Superconductivity

Isotope Effect in 1950

- Lattice vibration is a part of the SC process.
- A crucial step to a microscopic theory.

Emanuel Maxwell, Phys. Rev. 78, 477 (1950) C.A. Reynolds et al., Phys. Rev. 78, 487 (1950)

Emanuel Maxwell

© MIT

Bernard Serin & Charles Reynolds

© Rutgers University

Evidence for Energy Gap in 1953

Another motivation for the BCS theory of superconductivity.

A. Brown, M. W. Zemansky, and H. A. Boorse, Phys. Rev. 92, 52 (1953)B. B. Goodman, Proc. Phys. Soc. (London) A66, 217 (1953)

BCS Theory in 1957

Cooper Pairs

Exchange boson: Lattice Vibration Mode

John Bardeen

Microscopic theory for SC

Leon Cooper

Nobel Prize 1972

Robert Schrieffer

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)

Bosons vs Fermions

Pauli Exclusion Principle

Wolfgang Pauli

Nobel Prize 1945

Bose-Einstein Condensation

Predicted in 1924 Satyendra Nath Bose Albert Einstein

Carl Wieman Wolfgang Ketterle

Nobel Prize 2001

Normal Metallic State

Electrons in wave-like states in momentum-space (k-space)

 $p = \hbar k = h/\lambda$

$$E = \frac{\hbar^2 k^2}{2m}$$

Superconducting Ground State

Superconducting Ground States

$$\Psi_{BCS} = \prod_{k} \left(u_k + v_k c_{k\uparrow}^* c_{-k\downarrow}^* \right) | 0 >$$

 u_k and v_k : coherence factor

BCS, Phys Rev 108, 1175 (1957)

Superconducting Excited States

$$\gamma_{k\uparrow}^* = u_k c_{k\uparrow} + v_k c_{-k\downarrow}^*$$

Bogoliubov, Nuovo Cimento 7, 794 (1958)

BCS, Phys Rev 108, 1175 (1957)

 u_k and v_k : coherence factor

Superconducting Excited States

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Superconducting Excited States

Bogoliubov, Nuovo Cimento 7, 794 (1958)

Superconducting Energy Gap in 1960

Ivar Giaever

Nobel Prize in 1973 ©Schenectady Museum

Tunneling junction

S I N

I. Giaever, Phys. Rev. Lett. 5, 147 (1960)I. Giaever, Phys. Rev. 126, 941 (1962)

Superconducting Gap

Pair wave function : $\Psi_{kss'} = \langle \Psi_{BCS} | c_{-ks'} c_{ks} | \Psi_{BCS} \rangle = g(k) \chi_{ss'}$

Spin part :
$$\chi_{ss'}$$
 $(\uparrow \downarrow - \downarrow \uparrow)$ $S = 0$
 $(\uparrow \uparrow, \uparrow \downarrow + \downarrow \uparrow, \downarrow \downarrow)$ $S = 1$
Orbital part : $g(k)$ $\psi(\mathbf{r}) \propto \sum_{k=1}^{k} \frac{\Delta(\mathbf{k})}{\sqrt{c(\mathbf{k})^2 + \Delta(\mathbf{k})^2}} \exp(-i\mathbf{kr})$

Spin	Orbital					
anti-symmetric (<i>S</i> = 0)	symmetric (<i>s</i> , <i>d</i> ,)					
symmetric (<i>S</i> = 1)	anti-symmetric (<i>p, f,</i>)					

- l = 0 : s wave (conventional SC) l = 1 : p wave (superfluid ³He)
- l = 2 : d wave (cuprate SC)

If l > 0, $\psi(0) = 0$

repulsive interaction $\begin{cases}
\Delta(k) \text{ must change its sign}
\end{cases}$

Gap Equation

$$\Delta(\mathbf{k}) = -\frac{1}{2} \sum_{\mathbf{q}} V(\mathbf{q}) \frac{\Delta(\mathbf{k})}{\sqrt{\epsilon(\mathbf{k} + \mathbf{q})^2 + \Delta(\mathbf{k} + \mathbf{q})^2}} \tanh \frac{\sqrt{\epsilon(\mathbf{k} + \mathbf{q})^2 + \Delta(\mathbf{k} + \mathbf{q})^2}}{2k_B T}$$
Pairing interaction
In conventional BCS, $V(\mathbf{q}) = -|V| < 0 : \Delta$ is always positive.
If $V(\mathbf{q} = \mathbf{Q}) > 0$ plays a role, $\Delta(\mathbf{k})$ and $\Delta(\mathbf{k} + \mathbf{Q})$ have a different sign.

Flux Quantization Theory in 1950

* We note that in order for Ψ to be a single-valued function, as required by quantum mechanics, it is necessary that the moduli of χ fulfill a kind of quantum condition:

$$<\chi>=\oint \overline{\mathbf{p}}_{s}\cdot \mathbf{ds}=Kh$$

where K must be an integer. This means that there exists a <u>universal unit for the fluxoid</u>:

$$\Phi_1 = hc/e \simeq 4 \cdot 10^{-7} \text{ gauss} \cdot \text{cm}^2$$

Fritz London

Superconducting ring

©Duke Univ.

Superfluids, Macroscopic Theory of Superconductivity, Structure of Matter Vol. 1 (Wiley, New York, 1950)

Flux Quantization Experiments in 1961

Bascom Deaver

©APS

©Duke Univ.

Robert Doll

©Walther-Meißner-Institute

 $|\Phi| = n^{hc}/_{2e} = n\Phi_0,$ where $\Phi_0 = 2.0 \times 10^{-15} Tesla - m^2$ Each vortex carries one flux quanta SC carriers are 2e! Confirmation of Cooper pairs!

B. D. Deaver and W. M. Fairbank, PRL **7**, 43 (1961) R. Doll and M. Näbauer, PRL **7**, 51 (1961)

History of Conventional SC

History of Conventional SC

Matthias's Rules for Searching High TC SC

Bernd Matthias

By Joel Broida©

- 1. Stay away from insulators; transition metals are better.
- 2. There are favorable electron/atom ratios.
- 3. High symmetry is good; cubic symmetry is best.
- 4. Stay away from Oxygen
- 5. Stay away from magnetism
- 6. Stay away from theorists.
 - W. E. Pickett , Physica B 296, 112 (2001)I. I. Mazin, Nature 464, 183 (2010)

The Beginning of Unconventional SC: Heavy Fermion SC

Enormous effective mass of their charge carriers. This is achieved by a sharp spike in the DOS at the Fermi surface, to as much as 1000 times the density of states in Cu.

Frank Steglich ©Max Planck Institute

The Woodstock of Physics : Discovery of Cuprates

Possible High T_c Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Z. Phys. B - Condensed Matter 64,189 (1986)

J. Georg Bednorz

Nobel Prize 1987

K. Alex Müller

$La_{2-x}Ba_{x}CuO_{4}$, Tc=30K

The Woodstock of Physics : Discovery of Cuprates

M. K. Wu et al., PRL 58, 908 (1987)
Woodstock of Physics - March Meeting 1987

"The stores and the bars were all 'Physicists welcome,' " said Paul M. Grant, who headed the superconductivity research at I.B.M.'s Almaden Research Center in San Jose. He recalled a discotheque in Chelsea with a long line of people waiting to get in. "The bouncers took anybody that had a physical society badge on to the front," Dr. Grant recalled, "and we got in gratis. Can you imagine what a culture shift? We had a hell of a good time." – NY Times

©American Institute of Physics

History of Superconductors

The Discovery of Fe-based Superconductors (FeSC)

2006 : LaFeP($O_{1-x}F_x$), $T_C \sim 5K$ 2007 : LaNiPO, $T_C \sim 3K$ Feb 23, 2008 : LaFeAs($O_{1-x}F_x$), $T_C \sim 26K$

Hideo Hosono

- Y. Kamihara et al., JACS. 128, 10012 (2006)
- T. Watanabe et al., JACS. 46, 7719 (2007)
- Y. Kamihara et al., JACS. 130, 3296 (2008)

History of Conventional and High T_c Superconductors

Honorable Mention : MgB₂ in 2001

Tc=39K

Two superconducting gaps Strong sp^2 bonding and hybridization E_{2g} phonon and σ bond coupling leads to high Tc

J. Nagamatsu *et al.*, Nature 410, 63 (2001) Amy Liu *et al.*, PRL 87, 087005 (2001) H.J. Choi *et al.*, Nature 418, 758 (2002)

Honorable Mention : H₃S in 2015

T_c=203K under High Pressure Likely H-rich H₃S Conventional superconductor?

Mikhail Eremets

© Max-Planck-Institut für Chemie

A. P. Drozdov et al., Nature 525, 73 (2015)

- 1. Introduction to conventional superconductivity
- 2. Introduction to scanning tunneling microscopy (STM)
- 3. High Tc Superconductor : Cuprates
- 4. High Tc Superconductor : Fe-based Compounds

Scanning Tunneling Microscope (STM)

Heinrich Rohrer & Gerd Binnig

Nobel Prize in 1986 ©IBM

©Wikipedia

Quantum Tunneling

Erwin Schrödinger

Nobel Prize in 1933

B. Bleaney, Contemp. Phys. 25, 315 (1984)

Tunneling current

$$I(\vec{r}, z, V) \propto \exp(-2\kappa(\vec{r})z) \int_{0}^{E=eV} LDOS_{sample}(\vec{r}, E) dE$$

where $\kappa(\vec{r}) = \frac{\sqrt{2m\phi(\vec{r})}}{\hbar} \sim 1 \text{\AA}^{-1}$

Constant Current Topography

$$I(\vec{r}, z, V) \propto \exp(-2\kappa(\vec{r})z) \int_{0}^{E=eV} LDOS_{sample}(\vec{r}, E) dE$$

where $\kappa(\vec{r}) = \frac{\sqrt{2m\phi(\vec{r})}}{\hbar} \sim 1 \text{\AA}^{-1}$

Si(111) 7x7 © Omicron Nanotechnology GmbH

Si(111) 7x7 Structure

G. Binning et al., Phys. Rev. Lett. 50, 120 (1983)

© Omicron Nanotechnology GmbH

Tunneling Spectroscopy

Local Density of States : $\frac{dI}{dV}(\vec{r}, V) \propto LDOS_{sample}(\vec{r}, E = eV)$

 $I(V + \Delta V \sin \omega t) = I(V) + \frac{dI}{dV} \Delta V \sin \omega t + \dots$

Superconducting Energy Gap in 1960

Ivar Giaever

Nobel Prize in 1973 ©Schenectady Museum

Tunneling junction

S I N

Ivar Giaever, Phys. Rev. Lett. 5, 147 (1960) I. Giaever, Phys. Rev. 126, 941 (1962)

Superconducting Energy Gap by STM

Energy resolution is thermally limited.

2H-NbSe₂ , T_c = 7.1 K, measured at $T \sim 0.4$ K

©RIKEN

Scanning Tunneling Spectroscopy (STS) Mapping

Atomic resolution energy resolved conductance images, g(r,E) \propto LDOS(r,E)

Atomic Resolution Energy Resolved Images, LDOS(r,E)

Our Resolution and Stability

STM Tip on Piezo Scanner

@Wikipedia

 $0.5pm/6mm \rightarrow 42nm/509m!$

Ivar Giaever

Nobel Prize 1973

The best way to do science is not to buy a big piece of expensive equipment and use it to do research. There are lots of other people who have the same big expensive equipment. The best way to do science is if you can make your own equipment, make your own thing.

- Ivar Giaever, BCS@50 Conference, 2007

1.6K-9Tesla Cryogenic UHV STM @ Academia Sinica

100% Homemade!

http://www.phys.sinica.edu.tw/~chuangtm/

Vortex Imaging of NbSe₂ by STM

Harald F. Hess

2H-NbSe₂ : T_c = 7.1 K, T_{CDW} = 29 K

© www.janelia.org

H. F. Hess *et al.*, PRL 62, 214 (1989). H. F. Hess *et al.*, PRL 64, 2711 (1990).

Vortex Imaging of NbSe₂ by STM

Harald F. Hess

© www.janelia.org

2H-NbSe₂ : T_c = 7.1 K, T_{CDW} = 29 K

H. F. Hess *et al.*, PRL 62, 214 (1989). H. F. Hess *et al.*, PRL 64, 2711 (1990).

Quasiparticle Scattering Interference (QPI)

A path to determining momentum space structure by STM

Quasiparticle Scattering Interference (QPI)

Inferring Band Structure from QPI

QPI on Simple Metals

Landau quasiparticle standing waves at the surface of a 2D electron gas system. Scattering off impurities and edges.

Dispersion relation of Bloch electrons

Y. Hasegawa and Ph. Avouris, PRL 71, 1071 (1993).
M.F. Crommie *et al.*, Nature **363**, 524 (1993)

Atomic Scale Visualization of Novel Materials by STM

Advantages:

- Both occupied and empty states can be explored.
- Both real and momentum spaces can be explored.
- Magnetic-field compatible.
- Excellent energy resolution at low temperature

Disadvantages:

- Quasi-particle scatterers are necessary.
- Measurement takes VERY long time.

- 1. Introduction to conventional superconductivity
- 2. Introduction to scanning tunneling microscopy (STM)
- 3. High Tc Superconductor : Cuprates
- 4. High Tc Superconductor : Fe-based Compounds

High Tc Cuprate Superconductors (CuSC)

Antiferromagnetic Mott Insulator

Z. Phys. Rev. B 64 189 (1986)

Each Ba atom substituted for Sr captures and electron from CuO_2 plane leaving p holes per unit cell

Ba

Z. Phys. Rev. B 64 189 (1986)

CuO₂: Charge transfer yields a Cu-3d⁹ $d_{x^2-y^2}$ band

Half filling: Antiferromagnetic Mott Insulator

Mott Insulator: Repulsive Coulomb U~3eV

No double occupancy allowed..

N.F. Mott, Proc. Phys. Soc A62, 416 (1949)

Antiferromagnetic: Superexchange J~0.14eV

P. W. Anderson, *Phys. Rev.* 115, 2 (1959)

Holes introduced \Longrightarrow carriers become mobile

Dopant density p = number of holes per CuO₂ plaquette

$$H = -t \sum_{\langle i,j \rangle} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

J. Hubbard, Proc. Roy. Soc A276, 238 (1963)
How could this state become superconducting?

How could this state become superconducting?

Schematic Phase Diagram of Hole-doped Cuprates

Normal State Band Structure

CEC (E): The location in kspace of states with energy E

> Fermi Surface CCE(0)

Superconducting State : $d_{\chi^2 - \gamma^2}$ Pairing Symmetry

The SC energy gap, $\Delta(\mathbf{k})$ has four nodes.

Superconducting State : $d_{\chi^2 - \gamma^2}$ Pairing Symmetry

(b)

1000

DC SQUID

Superconducting State : $d_{x^2-v^2}$ Pairing Symmetry

DC SQUID

D. A. Wollman *et al.*, PRL 71, 2134 (1993)D. A. Wollman *et al.*, PRL 74, 797 (1995)

ARPES

H. Ding *et al.*, PRB 54, 9678 (1996) J. Mesot *et al.*, PRL 83, 840 (1999)